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• This paper proposes a rank consistency induced multi-view subspace clustering model to pursue a consistent low-rank 
structure among view-specific self-expressiveness coefficient matrices. 

• To facilitate a practical model, we parameterize the low-rank structure on all self-expressiveness coefficient matrices 
through the tri-factorization along with orthogonal constraints. This specification ensures that self-expressiveness 
coefficient matrices of different views have the same rank to effectively promote the structural consistency across multi-
views, which can learn a consistent subspace structure and fully exploit the complementary information.

• An efficient algorithm with guaranteed convergence is proposed to solve the formulated optimization problem. Extensive 
experiments on several benchmark datasets demonstrate the superiority and effectiveness of the proposed method.
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• Given a set of data vectors � =  �1, �2, ⋯, �� ∈ ��×� drawn 
from a union of � subspaces {��}�=1

� . The task of subspace 
clustering is to segment the data into several disjoint clusters 
according to the underlying subspaces they are drawn from.

• Spectral Clustering (SC) is a common framework for subspace 
clustering, which aims to learn a “good” affinity matrix.

• Low-Rank Representation (LRR) (G. Liu et al., TPAMI 2013):
��� �   � ∗      �. �.  � = ��

• Given multi-view data {�1, �2, ⋯, ��}, the general model of 
Multi-view Subspace Clustering (MSC) (J. Guo et al., TPAMI 
2023):

     �����∈ℂ  �=1
�  �� − ���� � + �Ω(�1, �2, ⋯, ��)

• There are two important principles for multi-view learning: 
complementarity and consistency. 

A. Rank Consistency Induced Multi-view Subspace Clustering 
(RC-MSC) (J. Guo et al., TNNLS, 2022)
  1) Complementarity: extending LRR into multi-view learning

�����,��    �=1
� �

�
 �� ∗ +  �� 2,1   �. �. �� = ���� + ��.  

  2) Consistency: rank consistency structural constraint
����(�1) = ����(�2) = ⋯ = ����(��) ≤ �, � ≪ �.

  The formulation of RC-MSC: 
           �����,��    �=1

� �/� �� ∗ +  �� 2,1
�. �.   �� = ���� + ��, ����(�1) = ⋯ = ����(��) ≤ �. 

B. RC-MSC via Matrix Factorization
  Parameterize the low-rank coefficient �� with tri-factorization
  along with orthogonal constraints and shared core matrix � :

 �� = �����
�, 

��
� ��= ��

� �� = ��, ��, �� ∈ ��×�,� ∈ ��×�.
  Proposition: Given a matrix �, which can be decomposed as
  ���� ,  where �, � ∈ ��×� ,  � ∈ ��×� ,  and ��� = ��� = �� .
  Then, � and � have the identical singular values. Thus, the rank
  of � equals to the rank of �, i.e., ����(�) = ����(�) ≤ �,    
   �� ∗ =  � ∗.
  Remark: ����(��) = ����(�) ≤ �,  �� ∗ =  � ∗.

C. The final objective function of RC-MSC
 �����,��  � � ∗ +  �=1

�  �� 2,1
�. �. �� = ���� + ��, �� = �����

� , ��
� ��= ��

� �� = ��.
 All views share the similar underlying clustering structure to
 achieve structure agreement and representation complementarity.

A. Optimization with Alternating Direction Method of Multipliers
• Partial augmented Lagrangian function

 ℒ = � � ∗ +  �=1
�   �� 2,1 + Φ(��

1, �� − ���� − ��) 
                 +  �=1

� Φ(��
2, �� − �����

�),
where ��

1 and ��
2 are dual variables, Φ(�, �) =  �, � + � � �

2/2.
• Alternating Direction Method of Multipliers (ADMM)
 1. Update ��: �����  Φ(��

2, �� − �����
�)   �. �.   ��

� �� = ��;
 2. Update ��: �����  Φ(��

2, �� − �����
�)   �. �.   ��

� �� = ��;
 3. Update �: ����� � ∗ +  �=1

� Φ(��
2, �� − �����

�);
 4. Update ��: �����Φ(��

1, �� − ���� − ��) + Φ(��
2, �� − �����

�);
 5. Update ��: �����   �� 2,1 + Φ(��

1, �� − ���� − ��);
 6. ��

1 = ��
1 + �(�� − ���� − ��), ��

2 = ��
2 + �(�� − �����

�);
 7. � =min (��, ����) , �>1.
B. Convergence Results
 Theorem. Let Υ� = {��

� , ��
� , ��

� , ��
� , ��, ��

1,�, ��
2,�} be the generated

 sequences of ADMM, assume that  ���
�→∞

��(��
�+1 − ��

�+1) = 0,
 ���
�→∞

��(��
�+1 − ��

�+1) = 0,  then the sequence Υ� satisfies:
 1) The sequence Υ� is bounded;
 2) The sequence Υ� has at least one accumulation point. And, any
   accumulation point is a stationary point of optimization problem.

• Construct the fused affinity matrix � = 1/�( �=1
�  �� +  ��

� ).
• Segment the data into � groups by Normalized Cuts.
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Yale UCI-Digits BBCSport Caltech101-7
ACC NMI ACC NMI ACC NMI ACC NMI

LTMSC 73.88 75.81 89.33 82.20 46.72 18.14 85.35 56.39
LMSC 60.09 63.61 78.86 75.20 92.10 84.61 86.64 57.23

CSMSC 78.70 80.28 90.77 83.77 94.85 85.56 86.82 59.27
FMRSC 81.64 79.31 85.11 77.03 87.13 80.69 84.46 49.36
RC-MSC 83.94 84.21 92.15 84.84 96.69 89.59 87.90 60.01

Table 1: Clustering results on the four benchmark datasets.

Fig 2. Affinity matrices obtained by CSMSC 
and RC-MSC on the UCI-Digits dataset.

Fig 3. Convergence 
curve of RC-MSC.
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Fig 1. The framework of the proposed RC-MSC.


